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O C  for  a few hours in a sealed degassed tube, a quanti tat ive y ie ld  of 
te t ra l in  and sym- d ie thy l  hydrazinedicarboxylate was isolated. 

Product from Maleic Anhydride and 1. (Product isolated as the 
diacid) 120 m g  of maleic anhydride and 70 m g  of 1 were dissolved in 
1 mL o f  puri f ied dioxane in a jointed test tube. The tube was degassed 
and sealed and heated in a n  o i l  b a t h  a t  100 "C overnight. T h e  tube 
was cooled and opened, and its contents were poured into 5 mL o f  95% 
ethanol containing excess KOH. T h e  solut ion was ref luxed for  0.5 h, 
cooled, poured i n t o  25 mL of HzO, extracted w i t h  ether, and then 
acidified w i t h  concentrated HCl. An o i l  separated which crystallized 
o n  t r i tu ra t ion  w i t h  petroleum ether. Recrystal l izat ion f r o m  95% 
ethanol yielded white crystals: mp 175-177 "C; NMR (CDC13) 6 
1.0-2.1 (m, 10 H), 6 2.8 i:m, 2 H), 6 3.1 (m, 2 H ) ,  6 6.25 (d  of  d, J = 4 Hz, 
J = 3 Hz,  2 H),  6 10.2 (hr, 2 H ) .  Anal. Calcd for C14H1804: C, 67.18; H, 
7.25. Found: C, 67.60; 19,6.57. 
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T h e  coupling constants of the carbon-proton and proton-proton bonds were determined for endo-1,2,3,4,5,7,7- 
heptachloronorbornene. Signs were determined for most  o f  the couplings. Comparisons of the norbornene cou- 
pl ings were made w i t h  those found in chloroethene and chlorocyclopropane. 

Research with a variety of compounds2 has shown large 
differences between the two-bond carbon-hydrogen couplings 
of the type 1 and 2, and, in fact, with halogenated  ethene^,^ 
such couplings showed unexpected positive and negative 1 2 
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Figure 1. (a) Coupled spectrum of high-field carbons of 4. (b) and ( c )  
Selectively decoupled spectra of high-field carbons: (b) decoupler set 
at high-field 13C satellite, and (c) decoupler set at low-field l3C sat- 
ellite. 

couplings. In hope of determining whether positive and neg- 
ative couplings such as 1 and 2 might be observed more gen- 
erally than for alkenes we have investigated the couplings in 
endo- 1,2,3,4,5,7,7-heptachloronorbornene (3). & 

c1 c1 (71 

endo-1,2,3,4,5,7',7-heptachloronorbornene (3)  

The proton-coupled 13C spectrum of 3 is shown in Figure 
la. From this spectrum and the proton spectrum, the pro- 
ton-proton and carbon-proton couplings were assigned as in 
4. The proton-proton couplings were assigned by analogy with 

4 2  

related compounds. With the usual assumption that vicinal 
couplings are positive,* J H ~ H ~  was given a positive sign. In- 
dependent determinations by Cox and Smith5 and by Wil- 
liamson6 strongly suggest a negative sign for JH~H~.  Selective 
decoupling of the 13C satellites of Ha, the low-field proton, 
gave the spectra shown in Figures l b  and IC. These spectra 
show that the sign of 2 J ~ ~ b  is opposite to that of J H ~ H ~ ,  and 
2 J ~ ~ b  is therefore taken to be negative. 

The two-bond carbon-hydrogen couplings in 3 are com- 
pared with analogous two-bond couplings in Table I. The 
coupling of ' J c H ~  of 3 is similar in magnitude to the trans 
carbon-hydrogen coupling in monosubstituted ethenes, but 
is of opposite sign. The cis coupling is much smaller in 3 than 
in substituted ethenes. 

Table I. Two-Bond Carbon-Hydrogen Couplings 
Compd and 

coupling 
examined 

Coupling,a 
Hz Ref 

' J c H ~  (trans) -6.1 This paper 
< 2.0 e ' J c H ,  (cis) 

'Jc,H,, (trans) -1.15 2 
'Jc,H, (cis) -5.05 

CI 
'JcH,, (trans) +7.1 3 I - L  

,c I= CE, 'JCHc (cis) -8.3 c1 H, 

they are known. 
a Positive and negative signs have been included where 

Comparison of the couplings in chloroethenes, heptachlo- 
ronorbornene (3), and chlorocyclopropane is interesting, al- 
though some care must be taken when discussing couplings 
in cyclopropane rings because one could question whether the 
observed couplings are actually the result of two-bond or 
three-bond interactions; in general three-bond proton-carbon 
couplings are larger than corresponding two-bond couplings. 
Ignoring this problem, the coupling 2 J ~ ~ b  is negative in both 
3 and chlorocyclopropane, as is the case for 2 J ~ ~  in alkanes 
and cycloalkanes. There seems to be a general progression of 
2 J ~ ~ b  in these compounds from large positive values in chlo- 
roethenes to large negative values in 3, with 2 J ~ ~ b  for chlo- 
rocyclopropane being intermediate. There is a corresponding 
change in 2 J ~ ~ c  which becomes more positive through the 
series, and was too small to measure for 3. Why these changes 
occur is by no means clear. The difference in sign for ~ J c H ~  and 
2 J ~ ~ c  has been rationalized by Jameson and Damasco7 but 
it is not obvious how the argument should be extended to 3 
and chlorocyclopropane. I t  will be interesting to determine 
whether similar trends in 2 J ~ ~  will be observed with other 
series of substances. 

Experimental Section 
All of the NMR spectra were taken of 0.53 M solutions in CDC13 

referenced to Me4Si. Proton spectra were obtained with a Varian 
A-60A NMR spectrometer or on a Varian HR-220 NMR spectrome- 
ter. Carbon-13 spectra were taken on a Bruker WH-180 NMR spec- 
trometer using the deuterium in the solvent as a field-frequency lock. 
The theoretical spectra were calculated using the computer program 
LEQUOR. 
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